Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.564
Filter
1.
Chinese Journal of Biotechnology ; (12): 1578-1595, 2023.
Article in Chinese | WPRIM | ID: wpr-981155

ABSTRACT

Flagella are the main motility structure of Clostridioides difficile that affects the adhesion, colonization, and virulence of C. difficile in the human gastrointestinal tract. The FliL protein is a single transmembrane protein bound to the flagellar matrix. This study aimed to investigate the effect of the FliL encoding gene flagellar basal body-associated FliL family protein (fliL) on the phenotype of C. difficile. The fliL gene deletion mutant (ΔfliL) and its corresponding complementary strains (: : fliL) were constructed using allele-coupled exchange (ACE) and the standard molecular clone method. The differences in physiological properties such as growth profile, antibiotic sensitivity, pH resistance, motility, and spore production ability between the mutant and wild-type strains (CD630) were investigated. The ΔfliL mutant and the : : fliL complementary strain were successfully constructed. After comparing the phenotypes of strains CD630, ΔfliL, and : : fliL, the results showed that the growth rate and maximum biomass of ΔfliL mutant decreased than that of CD630. The ΔfliL mutant showed increased sensitivity to amoxicillin, ampicillin, and norfloxacin. Its sensitivity to kanamycin and tetracycline antibiotics decreased, and the antibiotic sensitivity partially returned to the level of CD630 strain in the : : fliL strain. Moreover, the motility was significantly reduced in the ΔfliL mutant. Interestingly, the motility of the : : fliL strain significantly increased even when compared to that of the CD630 strain. Furthermore, the pH tolerance of the ΔfliL mutant significantly increased or decreased at pH 5 or 9, respectively. Finally, the sporulation ability of ΔfliL mutant reduced considerably compared to the CD630 strain and recovered in the : : fliL strain. We conclude that the deletion of the fliL gene significantly reduced the swimming motility of C. difficile, suggesting that the fliL gene is essential for the motility of C. difficile. The fliL gene deletion significantly reduced spore production, cell growth rate, tolerance to different antibiotics, acidity, and alkalinity environments of C. difficile. These physiological characteristics are closely related to the survival advantage in the host intestine, which is correlated with its pathogenicity. Thus, we suggested that the function of the fliL gene is closely related to its motility, colonization, environmental tolerance, and spore production ability, which consequently affects the pathogenicity of C. difficile.


Subject(s)
Humans , Clostridioides/metabolism , Clostridioides difficile/metabolism , Bacterial Proteins/metabolism , Virulence , Anti-Bacterial Agents/metabolism
2.
Biomedical and Environmental Sciences ; (12): 604-613, 2023.
Article in English | WPRIM | ID: wpr-981093

ABSTRACT

OBJECTIVE@#Campylobacter jejuni NCTC11168 is commonly used as a standard strain for flagellar biosynthesis research. In this report, two distinguished phenotypic isolates (CJ1Z, flhA mutant strain, lawn; CJ2S, flhA complemented strain, normal colony) appeared during laboratory passages for NCTC11168.@*METHODS@#Phenotypic assessments, including motility plates, transmission electron microscopy, biofilm formation assay, autoagglutination assay, and genome re-sequencing for these two isolates (CJ1Z, flhA mutant strain; CJ2S, flhA complemented strain) were carried out in this study.@*RESULTS@#Transmission electron microscopy revealed that the flagellum was lost in CJ1Z. Phenotypic assessments and genome sequencing of the two isolates were performed in this study. The capacity for biofilm formation, colony auto-agglutination, and isolate motility was reduced in the mutant CJ1Z. Comparative genomic analysis indicated a unique native nucleotide insertion in flhA (nt, 2154) that caused the I719Y and I720Y mutations and early truncation in flhA.@*CONCLUSION@#FlhA has been found to influence the expression of flagella in C. jejuni. To the best of our knowledge, this is the first study to describe the function of the C-terminal of this protein.


Subject(s)
Campylobacter jejuni/genetics , Bacterial Proteins/metabolism , Mutation , Biological Variation, Population
3.
Braz. j. biol ; 83: e246436, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1339391

ABSTRACT

Abstract Application of different fertilizers to check the efficiency of expression of Bt (Bacillus thuringiensis) gene in one of the leading commercialized crops (cotton) against Lepidopteran species is of great concern. The expression of Cry protein level can be controlled by the improvement of nutrients levels. Therefore, the myth of response of Cry toxin to different combinations of NP fertilizers was explored in three Bt cotton cultivars. Combinations include three levels of nitrogen and three levels of phosphorus fertilizers. Immunostrips and Cry gene(s) specific primer based PCR (Polymerase Chain Reaction) analysis were used for the presence of Bt gene that unveiled the presence of Cry1Ac gene only. Further, the ELISA (enzyme-linked immunosorbent assay) kit was used to quantify the expression of Cry1Ac protein. Under various NP fertilizers rates, the level of toxin protein exhibited highly significant differences. The highest toxin level mean was found to be 2.3740 and 2.1732 µg/g under the treatment of N150P75 kg ha-1 combination while the lowest toxin level mean was found to be 0.9158 and 0.7641 µg/g at the N50P25 kg ha-1 level at 80 and 120 DAS (Days After Sowing), respectively. It was concluded from the research that the usage of NP fertilizers has a positive relation with the expression of Cry1Ac toxin in Bt cotton. We recommend using the N150P50 kg ha-1 level as the most economical and practicable fertilizer instead of the standard dose N100P50 kg ha-1 to get the desired level of Cry1Ac level for long lasting plant resistance (<1.5). The revised dose of fertilizer may help farmers to avoid the cross-resistance development in contradiction of insect pests.


Resumo A aplicação de diferentes fertilizantes para verificar a eficiência da expressão do gene Bt (Bacillus thuringiensis) em uma das principais culturas comercializadas (algodão) contra espécies de lepidópteros é uma grande preocupação. A expressão do nível de proteína Cry pode ser controlada pela melhoria dos níveis de nutrientes. Portanto, o mito da resposta da toxina Cry a diferentes combinações de fertilizantes NP foi explorado em três cultivares de algodão Bt. As combinações incluem três níveis de nitrogênio e três níveis de fertilizantes de fósforo. A análise de PCR (reação em cadeia da polimerase) específica para o gene (s) Immunostrips e Cry (s) foi usada para a presença do gene Bt que revelou a presença do gene Cry1Ac apenas. Além disso, o kit ELISA (ensaio de imunoabsorção enzimática) foi usado para quantificar a expressão da proteína Cry1Ac. Sob várias taxas de fertilizantes NP, o nível de proteína de toxina exibiu diferenças altamente significativas. A média do nível mais alto de toxina foi de 2,3740 e 2,1732 µg / g sob o tratamento da combinação N150P75 kg ha-1, enquanto a média do nível mais baixo de toxina foi de 0,9158 e 0,7641 µg / g no nível de N50P25 kg ha-1 em 80 e 120 DAS (dias após a semeadura), respectivamente. Concluiu-se com a pesquisa que o uso de fertilizantes NP tem relação positiva com a expressão da toxina Cry1Ac no algodão Bt. Recomendamos o uso do nível de N150P50 kg ha-1 como o fertilizante mais econômico e praticável em vez da dose padrão N100P50 kg ha-1 para obter o nível desejado de nível de Cry1Ac para resistência de planta de longa duração (<1,5). A dose revisada de fertilizante pode ajudar os agricultores a evitar o desenvolvimento de resistência cruzada em contradição com as pragas de insetos.


Subject(s)
Animals , Hemolysin Proteins/genetics , Moths , Phosphorus , Bacterial Proteins/genetics , Insecticide Resistance , Plants, Genetically Modified/genetics , Endotoxins/genetics , Fertilizers , Bacillus thuringiensis Toxins , Larva , Nitrogen
4.
Chinese Journal of Epidemiology ; (12): 624-628, 2023.
Article in Chinese | WPRIM | ID: wpr-985537

ABSTRACT

Objective: We analyze the characteristics of Clostridioides difficile (C. difficile) infection among diarrhea patients in Kunming from 2018 to 2020 and provide evidence for follow-up surveillance and prevention. Methods: A total of 388 fecal samples of diarrhea patients from four sentinel hospitals in Yunnan Province from 2018 to 2020 were collected. Real-time quantitative PCR was used to detect the fecal toxin genes of C. difficile. The positive fecal samples isolated the bacteria, and isolates were identified by mass spectrometry. The genomic DNA of the strains was extracted for multi-locus sequence typing (MLST). The fecal toxin, strain isolation, and clinical patient characteristics, including co-infection with other pathogens, were analyzed. Results: Among the 388 fecal samples, 47 samples with positive reference genes of C. difficile were positive, with a total positive rate of 12.11%. There were 4 (8.51%) non-toxigenic and 43 (91.49%) toxigenic ones. A total of 18 strains C. difficile were isolated from 47 positive specimens, and the isolation rate of positive specimens was 38.30%. Among them, 14 strains were positive for tcdA, tcdB, tcdC, tcdR, and tcdE. All 18 strains of C. difficile were negative for binary toxins. The MLST results showed 10 sequence types (ST), including 5 strains of ST37, accounting for 27.78%; 2 strains of ST129, ST3, ST54, and ST2, respectively; and 1 strain of ST35, ST532, ST48, ST27, and ST39, respectively. Fecal toxin gene positive (tcdB+) results were statistically associated with the patient's age group and with or without fever before the visit; positive isolates were only statistically associated with the patient's age group. In addition, some C. difficile patients have co-infection with other diarrhea-related viruses. Conclusions: The infection of C. difficile in diarrhea patients in Kunming is mostly toxigenic strains, and the high diversity of strains was identified using the MLST method. Therefore, the surveillance and prevention of C. difficile should be strengthened.


Subject(s)
Humans , Bacterial Toxins/genetics , Enterotoxins/genetics , Clostridioides difficile/genetics , Multilocus Sequence Typing , Coinfection , Bacterial Proteins/genetics , China/epidemiology , Clostridium Infections/epidemiology , Diarrhea/microbiology
5.
Chinese Journal of Biotechnology ; (12): 1096-1106, 2023.
Article in Chinese | WPRIM | ID: wpr-970425

ABSTRACT

L-asparaginase (L-ASN) is widely applied in the treatment of malignant tumor and low-acrylamide food production, however, the low expression level hampers its application. Heterologous expression is an effective strategy to increase the expression level of target enzymes, and Bacillus is generally used as the host for efficient production of enzymes. In this study, the expression level of L-asparaginase in Bacillus was enhanced through optimization of expression element and host. Firstly, five signal peptides (SPSacC, SPAmyL, SPAprE, SPYwbN and SPWapA) were screened, among which SPSacC showed the best performance, reaching an activity of 157.61 U/mL. Subsequently, four strong promoters (P43, PykzA-P43, PUbay and PbacA) from Bacillus were screened, and tandem promoter PykzA-P43 showed the highest yield of L-asparaginase, which was 52.94% higher than that of control strain. Finally, three Bacillus expression hosts (B. licheniformis Δ0F3 and BL10, B. subtilis WB800) were investigated, and the maximum L-asparaginase activity, 438.3 U/mL, was reached by B. licheniformis BL10, which was an 81.83% increase compared with that of the control. This is also the highest level of L-asparaginase in shake flask reported to date. Taken together, this study constructed a B. licheniformis strain BL10/PykzA-P43-SPSacC-ansZ capable of efficiently producing L-asparaginase, which laid the foundation for industrial production of L-asparaginase.


Subject(s)
Bacillus licheniformis/metabolism , Asparaginase/genetics , Bacillus/genetics , Protein Sorting Signals , Promoter Regions, Genetic/genetics , Bacillus subtilis/genetics , Bacterial Proteins
6.
Chinese Journal of Biotechnology ; (12): 446-458, 2023.
Article in Chinese | WPRIM | ID: wpr-970384

ABSTRACT

Bt Cry toxin is the mostly studied and widely used biological insect resistance protein, which plays a leading role in the green control of agricultural pests worldwide. However, with the wide application of its preparations and transgenic insecticidal crops, the resistance to target pests and potential ecological risks induced by the drive are increasingly prominent and attracting much attention. The researchers seek to explore new insecticidal protein materials that can simulate the insecticidal function of Bt Cry toxin. This will help to escort the sustainable and healthy production of crops, and relieve the pressure of target pests' resistance to Bt Cry toxin to a certain extent. In recent years, the author's team has proposed that Ab2β anti-idiotype antibody has the property of mimicking antigen structure and function based on the "Immune network theory" of antibody. With the help of phage display antibody library and specific antibody high-throughput screening and identification technology, Bt Cry toxin antibody was designed as the coating target antigen, and a series of Ab2β anti-idiotype antibodies (namely Bt Cry toxin insecticidal mimics) were screened from the phage antibody library. Among them, the lethality of Bt Cry toxin insecticidal mimics with the strongest activity was close to 80% of the corresponding original Bt Cry toxin, showing great promise for the targeted design of Bt Cry toxin insecticidal mimics. This paper systematically summarized the theoretical basis, technical conditions, research status, and discussed the development trend of relevant technologies and how to promote the application of existing achievements, aiming to facilitate the research and development of green insect-resistant materials.


Subject(s)
Insecticides/metabolism , Bacillus thuringiensis , Endotoxins/pharmacology , Bacillus thuringiensis Toxins/metabolism , Hemolysin Proteins/pharmacology , Bacterial Proteins/chemistry , Plants, Genetically Modified/genetics , Pest Control, Biological
7.
Chinese Journal of Preventive Medicine ; (12): 416-421, 2023.
Article in Chinese | WPRIM | ID: wpr-969904

ABSTRACT

To explore the clinical distribution and drug resistance characteristics of carbapenem-resistant Klebsiella pneumoniae (CRKP), in order to provide reference for the prevention and treatment of CRKP infection. Retrospective analysis was performed on 510 clinical isolates of CRKP from January 2017 to December 2021, and strain identification and drug sensitivity tests were conducted by MALDI-TOF mass spectrometer and VITEK-2 Compact microbial drug sensitivity analyzer. The carbapenemase phenotype of CRKP strain was detected by carbapenemase inhibitor enhancement test. The CRKP strain was further categorized by immunochromogenic method and polymerase chain reaction (PCR) was used for gene detection. The results showed that 302 strains (59.2%) were derived from sputum, 127 strains (24.9%) from urine and 47 strains (9.2%) from blood. 231 (45.3%) were mainly distributed in intensive care, followed by 108 (21.2%) in respiratory medicine and 79 (15.5%) in neurosurgery. Drug susceptibility test result shows that the resistant rate of tigecycline increased from 1.0% in 2017 to 10.1% in 2021, the difference was statistically significant (χ2=14.444,P<0.05). The results of carbapenemase inhibitor enhancement test showed that 461 carbapenemase strains (90.4%) of 510 CRKP strains, including 450 serinase strains (88.2%), 9 metalloenzyme strains (1.8%), and 2 strains (0.4%) produced both serine and metalloenzyme. 49 strains (9.6%) did not produce enzymes. Further typing by immunochromogenic assay showed that 461 CRKP strains were KPC 450 (97.6%) and IMP 2 (0.4%). 7 NDM (1.5%); 2 strains of KPC+NDM (0.4%); PCR results were as follows: 450 strains of blaKPC (97.6%), 2 strains of blaIMP (0.4%), 7 strains of blaNDM (1.5%), and 2 strains of blaKPC+NDM (0.4%). In conclusion, CRKP strains mainly originated from sputum specimens and distributed in intensive care department, and the drug resistance characteristics were mainly KPC type in carbapenemase production. Clinical microbiology laboratory should strengthen the monitoring of CRKP strains, so as to provide reference for preventing CRKP infection and reducing the production of bacterial drug resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Klebsiella pneumoniae/genetics , Hospital Distribution Systems , Retrospective Studies , Microbial Sensitivity Tests , beta-Lactamases/genetics , Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics
8.
Rev. chil. infectol ; 39(3): 361-363, jun. 2022. tab
Article in Spanish | LILACS | ID: biblio-1407792

ABSTRACT

Resumen La aparición de Enterobacterales co-productores de dos o más carbapenemasas han despertado las alertas sanitarias en Latinoamérica. Las enterobacterias co-productoras de carbapenemasas KPC y NDM-1 son resistentes a casi todos los antibacterianos existentes. Panamá ha reportado la presencia de carbapenemasas KPC desde 2010 y NDM desde 2011; sin embargo, Enterobacterales con doble producción de carbapenemasas es un fenómeno reciente en nuestros hospitales. Presentamos los dos primeros aislados de Enterobacter cloacae complex co-productores de KPC y NDM, en un hospital de segundo nivel de la Ciudad de Panamá. El reforzamiento de los sistemas de vigilancia epidemiológica en los hospitales permite realizar una detección oportuna de estas nuevas combinaciones de mecanismos de resistencia; para así, implementar medidas de prevención y control de brotes.


Abstract Enterobacterales co-producing carbapenemases have awakened health alerts in Latin America. Carbapenemase-producing Enterobacterales harboring KPC and NDM-1 are resistant to almost all existing antibiotics. Panama reports KPC since 2010, and NDM since 2011, however, Enterobacterales with double carbapenemase production is new to our hospitals. We present the first two isolates of Enterobacter cloacae complex co-producing KPC and NDM, in a second level hospital in Panama City. Strengthening epidemiological surveillance systems in hospitals allows to carry out timely detection of these new combinations of resistance; to implement outbreak prevention and control measures.


Subject(s)
Humans , Male , Aged , Aged, 80 and over , Enterobacter cloacae/isolation & purification , Enterobacteriaceae Infections/diagnosis , Enterobacteriaceae Infections/epidemiology , Panama/epidemiology , Bacterial Proteins , beta-Lactamases , Hospitals , Latin America , Anti-Bacterial Agents/pharmacology
9.
Rev. chil. infectol ; 39(2): 109-116, abr. 2022. ilus, tab
Article in Spanish | LILACS | ID: biblio-1388342

ABSTRACT

INTRODUCCIÓN: Existe un incremento de las infecciones por Klebsiella pneumoniae resistente a carbapenémicos (KPRC) en la población pediátrica y los datos epidemiológicos son limitados. OBJETIVOS: Conocer la frecuencia de KPRC en pacientes pediátricos, determinar la actividad in vitro de colistina y detectar el gen mcr-1 en dichos aislados. MATERIALES Y MÉTODOS: Se estudiaron 220 aislados de K. pneumoniae en un hospital pediátrico durante los años 2018 y 2019. La susceptibilidad antimicrobiana se determinó por microdilución en caldo según CLSI y EUCAST. Los genes blaKPC, blaNDM, blaIMP, blaVIM, blaOXA-48 y mcr-1 se analizaron mediante reacción de polimerasa en cadena (RPC). RESULTADOS: El 9,5% (n: 21) de los aislados fueron caracterizados como KPRC, donde se observó una resistencia a colistina de 47,6% (10/21) con valores de CIM50 de 2 μg/mL y CIM90 de > 4 μg/mL. En todos los aislados de KPRC se caracterizó el gen blaKPC y no se detectó el gen mcr-1. El perfil de resistencia observado en otros antimicrobianos fue el siguiente: gentamicina 100% (n: 21), ciprofloxacina 100% (n: 21), cotrimoxazol 100% (n: 21) y amikacina 19% (n: 4). Se observó 100% de sensibilidad a tigeciclina y ceftazidima/avibactam. CONCLUSIÓN: Este estudio demuestra un valor significativo de la resistencia a colistina en comparación a ceftazidima/avibactam y tigeciclina.


BACKGROUND: There is an increase of carbapenem-resistant Klebsiella pneumoniae (CRKP) infections in the pediatric population and epidemiological data are limited. Aim: To calculate the frequency of CRKP in pediatric patients, to determine the in vitro activity of colistin and to detect the presence of mcr-1 gene in said isolates. METHODS: 220 isolates of K. pneumoniae were studied in a pediatric hospital between January 2018 and December 2019. Antimicrobial susceptibility was determined by microdilution in broth according to guidelines of CLSI and EUCAST. The genes blaKPC, blaNDM, blaIMP, blaVIM, blaOXA-48 and mcr-1 were detected by polymerase chain reaction (PCR). RESULTS: 9.5% (n: 21) of the isolates were characterized as CRKP, where was observed a resistance to colistin of 47.6% (10/21) with values of MIC50 of 2 μg/mL and MIC90 of ≥ 4 μg/mL. In 100% of CRKP strains the blaKPC gene was detected and the mcr-1 gene was not found. The resistance profile to other antimicrobials was as follow: gentamicin 100% (n: 21), trimethoprim/sulfamethoxazole 100% (n: 21), ciprofloxacin 100% (n: 21), amikacin 19% (n: 4). All of the isolates were sensitive to ceftazidime/avibactam and tigecycline. CONCLUSION: This study demonstrates a significant value of resistance to colistin in pediatric patients compared to other last line antimicrobial such as ceftazidime/avibactam and tigecycline.


Subject(s)
Humans , Child , Klebsiella Infections/drug therapy , Carbapenem-Resistant Enterobacteriaceae , Argentina , Bacterial Proteins/genetics , beta-Lactamases/genetics , Microbial Sensitivity Tests , Carbapenems/pharmacology , Ceftazidime , Colistin/pharmacology , Tigecycline , Hospitals, Pediatric , Klebsiella pneumoniae/genetics , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology
10.
Biol. Res ; 55: 19-19, 2022. ilus, tab, graf
Article in English | LILACS | ID: biblio-1383921

ABSTRACT

BACKGROUND: Acidophilic microorganisms like Leptospirillum sp. CF 1 thrive in environments with extremely low pH and high concentrations of dissolved heavy metals that can induce the generation of reactive oxygen species (ROS). Several hypothetical genes and proteins from Leptospirillum sp. CF 1 are known to be up regulated under oxidative stress conditions. RESULTS: In the present work, the function of hypothetical gene ABH19_09590 from Leptospirillum sp. CF 1 was studied. Heterologous expression of this gene in Escherichia coli led to an increase in the ability to grow under oxidant conditions with 5 mM K2CrO4 or 5 mM H2O2. Similarly, a significant reduction in ROS production in E. coli transformed with a plasmid carrying ABH19_09590 was observed after exposure to these oxidative stress elicitors for 30 min, compared to a strain complemented with the empty vector. A co transcriptional study using RT PCR showed that ABH19_09590 is contained in an operon, here named the "och" operon, that also contains ABH19_09585, ABH19_09595 and ABH19_09600 genes. The expression of the och operon was significantly up regulated in Leptospirillum sp. CF 1 exposed to 5 mM K2CrO4 for 15 and 30 min. Genes of this operon potentially encode a NADH:ubiquinone oxidoreductase, a CXXC motif containing protein likely involved in thiol/disulfide exchange, a hypothetical protein, and a di hydroxy acid dehydratase. A comparative genomic analysis revealed that the och operon is a characteristic genetic determinant of the Leptospirillum genus that is not present in other acidophiles. CONCLUSIONS: Altogether, these results suggest that the och operon plays a protective role against chromate and hydrogen peroxide and is an important mechanism required to face polyextremophilic conditions in acid environments.


Subject(s)
Chromates/metabolism , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Operon , Bacteria/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress/genetics , Escherichia coli
11.
Biol. Res ; 55: 9-9, 2022. ilus
Article in English | LILACS | ID: biblio-1383913

ABSTRACT

BACKGROUND: Listeria monocytogenes is a foodborne pathogen that causes listeriosis in humans. This pathogen activates multiple regulatory mechanisms in response to stress, and cobalamin biosynthesis might have a potential role in bacterial protection. Low temperature is a strategy used in the food industry to control bacteria proliferation; however, L. monocytogenes can grow in cold temperatures and overcome different stress conditions. In this study we selected L. monocytogenes List2-2, a strain with high tolerance to the combination of low temperature +copper, to understand whether the cobalamin biosynthesis pathway is part of the tolerance mechanism to this stress condition. For this, we characterized the transcription level of three cobalamin biosynthesis related genes ( cbiP , cbiB, and cysG ) and the eutV gene, a transcriptional regulator encoding gene involved in ethanolamine metabolism, in L. monocytogenes strain List2-2 growing simultaneously under two environmental stressors: low temperature (8 °C) +copper (0.5 mM of CuSO4 ×5H2O). In addition, the gene cbiP , which encodes an essential cobyric acid synthase required in the cobalamin pathway, was deleted by homologous recombination to evaluate the impact of this gene in L. monocytogenes tolerance to a low temperature (8 °C) +different copper concentrations. RESULTS: By analyzing the KEGG pathway database, twenty-two genes were involved in the cobalamin biosynthesis pathway in L. monocytogenes List2-2. The expression of genes cbiP , cbiB, and cysG, and eutV increased 6 h after the exposure to low temperature +copper. The cobalamin cbiP mutant strain List2-2Δ cbiP showed less tolerance to low temperature +copper (3 mM) than the wild type L. monocytogenes List2-2. The addition of cyanocobalamin (5 nM) to the medium reverted the phenotype observed in List2-2Δ cbiP . CONCLUSION: These results indicate that cobalamin biosynthesis is necessary for L. monocytogenes growth under stress and that the cbiP gene may play a role in the survival and growth of L. monocytogenes List2-2 at low temperature +copper.


Subject(s)
Humans , Listeria monocytogenes/genetics , Temperature , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Vitamin B 12/genetics , Vitamin B 12/metabolism , Cold Temperature , Copper
12.
Biol. Res ; 55: 7-7, 2022. ilus, graf
Article in English | LILACS | ID: biblio-1383911

ABSTRACT

BACKGROUND: Aerobic metabolism generates reactive oxygen species that may cause critical harm to the cell. The aim of this study is the characterization of the stress responses in the model aromatic degrading bacterium Paraburkholderia xenovorans LB400 to the oxidizing agents paraquat and H 2 O2. METHODS: Antioxidant genes were identified by bioinformatic methods in the genome of P. xenovorans LB400, and the phylogeny of its OxyR and SoxR transcriptional regulators were studied. Functionality of the transcriptional regulators from strain LB400 was assessed by complementation with LB400 SoxR of null mutant P. aeruginosa ΔsoxR, and the construction of P. xenovorans pIZ oxyR that overexpresses OxyR. The effects of oxidizing agents on P. xenovorans were studied measuring bacterial susceptibility, survival and ROS formation after exposure to paraquat and H 2 O2. The effects of these oxidants on gene expression (qRT PCR) and the proteome (LC-MS/MS) were quantified. RESULTS: P. xenovorans LB400 possesses a wide repertoire of genes for the antioxidant defense including the oxyR , ahpC , ahpF , kat , trxB , dpsA and gorA genes, whose orthologous genes are regulated by the transcriptional regulator OxyR in E. coli . The LB400 genome also harbors the soxR, fumC , acnA , sodB , fpr and fldX genes, whose orthologous genes are regulated by the transcriptional regulator SoxR in E. coli . The functionality of the LB400 soxR gene was confirmed by complementation of null mutant P. aeruginosa Δ soxR . Growth, susceptibility, and ROS formation assays revealed that LB400 cells were more susceptible to paraquat than H2O2. Transcriptional analyses indicated the upregulation of the oxyR , ahpC1 , katE and ohrB genes in LB400 cells after exposure to H2O2, whereas the oxyR , fumC , ahpC1 , sodB1 and ohrB genes were induced in presence of paraquat. Proteome analysis revealed that paraquat induced the oxidative stress response proteins AhpCF and DpsA, the universal stress protein UspA and the RNA chaperone CspA. Both oxidizing agents induced the Ohr protein, which is involved in organic peroxide resistance. Notably, the overexpression of the LB400 oxyR gene in P. xenovorans significantly decreased the ROS formation and the susceptibility to paraquat, suggesting a broad OxyR regulated antioxidant response. CONCLUSIONS: This study showed that P. xenovorans LB400 possess a broad range oxidative stress response, which explain the high resistance of this strain to the oxidizing compounds paraquat and H2O2.


Subject(s)
Gene Expression Regulation, Bacterial , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Oxidation-Reduction , Repressor Proteins/genetics , Repressor Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chromatography, Liquid , Oxidative Stress , Burkholderiaceae , Escherichia coli/genetics , Tandem Mass Spectrometry , Hydrogen Peroxide/pharmacology
13.
Braz. j. biol ; 82: e235927, 2022. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1249226

ABSTRACT

Glutamine synthetase (GS), encoded by glnA, catalyzes the conversion of L-glutamate and ammonium to L-glutamine. This ATP hydrolysis driven process is the main nitrogen assimilation pathway in the nitrogen-fixing bacterium Azospirillum brasilense. The A. brasilense strain HM053 has poor GS activity and leaks ammonium into the medium under nitrogen fixing conditions. In this work, the glnA genes of the wild type and HM053 strains were cloned into pET28a, sequenced and overexpressed in E. coli. The GS enzyme was purified by affinity chromatography and characterized. The GS of HM053 strain carries a P347L substitution, which results in low enzyme activity and rendered the enzyme insensitive to adenylylation by the adenilyltransferase GlnE.


A glutamina sintetase (GS), codificada por glnA, catalisa a conversão de L-glutamato e amônio em L-glutamina. Este processo dependente da hidrólise de ATP é a principal via de assimilação de nitrogênio na bactéria fixadora de nitrogênio Azospirillum brasilense. A estirpe HM053 de A. brasilense possui baixa atividade GS e excreta amônio no meio sob condições de fixação de nitrogênio. Neste trabalho, os genes glnA das estirpes do tipo selvagem e HM053 foram clonados em pET28a, sequenciados e superexpressos em E. coli. A enzima GS foi purificada por cromatografia de afinidade e caracterizada. A GS da estirpe HM053 possui uma substituição P347L que resulta em baixa atividade enzimática e torna a enzima insensível à adenililação pela adenililtransferase GlnE.


Subject(s)
Bacterial Proteins/genetics , Azospirillum brasilense/enzymology , Azospirillum brasilense/genetics , Ammonium Compounds , Glutamate-Ammonia Ligase/genetics , Escherichia coli/genetics
14.
Chinese Journal of Biotechnology ; (12): 1809-1823, 2022.
Article in Chinese | WPRIM | ID: wpr-927819

ABSTRACT

Bacillus thuringiensis is widely used as an insecticide which is safe and environmentally friendly to humans and animals. One of the important insecticidal mechanisms is the binding of Bt toxins to specific toxin receptors in insect midgut and forming a toxin perforation which eventually leads to insect death. The resistance of target pests to Bt toxins is an important factor hampering the long-term effective cultivation of Bt crops and the continuous use of Bt toxins. This review summarizes the mechanism of insect resistance to Bt toxins from the perspective of important Bt toxin receptors in midgut cells of Lepidopteran insects, which may facilitate the in-depth study of Bt resistance mechanism and pest control.


Subject(s)
Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis Toxins , Bacterial Proteins/metabolism , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Insecta/metabolism , Insecticide Resistance/genetics , Insecticides/pharmacology , Pest Control, Biological
15.
Chinese Journal of Biotechnology ; (12): 1506-1517, 2022.
Article in Chinese | WPRIM | ID: wpr-927796

ABSTRACT

In order to explore the effect of peptidoglycan hydrolase on the viable cell counts of Bacillus amyloliquefaciens and the yield of alkaline protease, five peptidoglycan hydrolase genes (lytC, lytD, lytE, lytF and lytG) of B. amyloliquefaciens TCCC111018 were knocked out individually. The viable cell counts of the bacteria and their alkaline protease activities before and after gene deletion were determined. The viable cell counts of the knockout mutants BA ΔlytC and BA ΔlytE achieved 1.67×106 CFU/mL and 1.44×106 CFU/mL respectively after cultivation for 60 h, which were 32.5% and 14.3% higher than that of the control strain BA Δupp. Their alkaline protease activities reached 20 264 U/mL and 17 265 U/mL, respectively, which were 43.1% and 27.3% higher than that of the control strain. The results showed that deleting some of the peptidoglycan hydrolase genes effectively maintained the viable cell counts of bacteria and increased the activity of extracellular enzymes, which may provide a new idea for optimization of the microbial host for production of industrial enzymes.


Subject(s)
Bacillus amyloliquefaciens/genetics , Bacterial Proteins , Cell Count , Endopeptidases/genetics , N-Acetylmuramoyl-L-alanine Amidase/genetics
16.
Chinese Journal of Biotechnology ; (12): 1050-1060, 2022.
Article in Chinese | WPRIM | ID: wpr-927762

ABSTRACT

As the only translational factor that plays a critical role in two translational processes (elongation and ribosome regeneration), GTPase elongation factor G (EF-G) is a potential target for antimicrobial agents. Both Mycobacterium smegmatis and Mycobacterium tuberculosis have two EF-G homologous coding genes, MsmEFG1 (MSMEG_1400) and MsmEFG2 (MSMEG_6535), fusA1 (Rv0684) and fusA2 (Rv0120c), respectively. MsmEFG1 (MSMEG_1400) and fusA1 (Rv0684) were identified as essential genes for bacterial growth by gene mutation library and bioinformatic analysis. To investigate the biological function and characteristics of EF-G in mycobacterium, two induced EF-G knockdown strains (Msm-ΔEFG1(KD) and Msm-ΔEFG2(KD)) from Mycobacterium smegmatis were constructed by clustered regularly interspaced short palindromic repeats interference (CRISPRi) technique. EF-G2 knockdown had no effect on bacterial growth, while EF-G1 knockdown significantly retarded the growth of mycobacterium, weakened the film-forming ability, changed the colony morphology, and increased the length of mycobacterium. It was speculated that EF-G might be involved in the division of bacteria. Minimal inhibitory concentration assay showed that inhibition of EF-G1 expression enhanced the sensitivity of mycobacterium to rifampicin, isoniazid, erythromycin, fucidic acid, capreomycin and other antibacterial agents, suggesting that EF-G1 might be a potential target for screening anti-tuberculosis drugs in the future.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , Drug Resistance , Mycobacterium smegmatis/metabolism , Peptide Elongation Factor G/pharmacology
17.
Chinese Journal of Biotechnology ; (12): 185-195, 2022.
Article in Chinese | WPRIM | ID: wpr-927703

ABSTRACT

Clostridium difficile is an important zoonotic intestinal pathogen, which is widely present in humans and a variety of animals. The ST11 type C. difficile is one of the most widespread and harmful subtypes in the world. As a large country in pig farming, China lacks efficient methods for detecting C. difficile of porcine origin, leaving hidden dangers for the prevention and control of C. difficile. The aim of this study was to develop a specific and sensitive double-antibody sandwich ELISA for the epidemiological investigation of ST11 type C. difficile of porcine origin. Firstly, a 97 kDa receptor binding domain (RBD) was expressed in a prokaryotic host and purified. A hybridoma cell line AE2D3 capable of stably secreting monoclonal antibody targeting the RBD was screened, and the antibody subtype was determined to be IgG2b (κ). Secondly, a double antibody sandwich ELISA method was developed, where the monoclonal antibody targeting the RBD was used as a detection antibody, and the rabbit polyclonal antibody was used as a capture antibody. The chessboard method was used to determine the matching concentration of the capture antibody and the detection antibody, the antigen coating conditions, the blocking conditions, the incubation conditions for detection antibody and samples to be tested, as well as the reaction conditions of HRP-conjugated and reaction conditions of TMB chromogenic solution. The negative cutoff OD450 was 0.152, and no cross-reaction with 13 strains of non-ST11 type C. difficile was found. The minimum detection concentration of RBD was 8.83 ng/mL. This specific and sensitive double-antibody sandwich ELISA provides a reliable serological detection method for epidemiological investigation of the ST11 type C. difficile in pig industry.


Subject(s)
Animals , Antibodies, Monoclonal , Bacterial Proteins/genetics , Bacterial Toxins , Clostridioides difficile , Enzyme-Linked Immunosorbent Assay , Hybridomas , Swine
18.
Chinese Journal of Biotechnology ; (12): 148-159, 2022.
Article in Chinese | WPRIM | ID: wpr-927700

ABSTRACT

The GapC protein of Streptococcus uberis located on the surface of bacteria is a protein with glyceraldehyde-3-phosphate dehydrogenase activity. It participates in cellular processes and exhibits a variety of biological activities. In addition, it has good antigenicity. The aim of this study was to predict the possible B-cell epitopes of the GapC protein and verify the immunogenicity of candidate epitope peptides. The gapC gene of S. uberis isolate RF5-1 was cloned into a recombinant expression plasmid pET-28a-GapC and inducibly expressed. The purified protein was used to immunize experimental rabbits to produce anti-GapC polyclonal antibodies. The three-dimensional structure and three-dimensional location of the GapC B-cell epitopes and the homology comparison of the GapC protein and its B-cell epitopes were carried out using bioinformatics softwares. The results showed that the 44-kDa GapC protein had a good immunological reactivity. Six linear and 3 conformational dominant B-cell epitopes against the GapC protein were selected and synthesized. Three dimensional analysis indicated that the selected peptides have better antigen epitope formation potential. Rabbit anti-GapC polyclonal antibodies were generated after immunized with the purified GapC protein, and the polyclonal antibodies were used to identify the epitope peptide by an indirect ELISA. The ELISA results showed that all of the 9 epitope peptides could react with anti-GapC polyclonal antibodies with varying titers. Among them, the epitope polypeptide 266AANDSYGYTEDPIVSSD282 reacted with the polyclonal antibodies significantly stronger than with other epitope peptides. This study laid an experimental foundation for in-depth understanding of the immunological properties and utilizing effective epitopes of the GapC protein of S. uberis.


Subject(s)
Animals , Mice , Rabbits , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Epitopes, B-Lymphocyte/genetics , Mice, Inbred BALB C , Streptococcus
19.
Chinese Journal of Preventive Medicine ; (12): 601-608, 2022.
Article in Chinese | WPRIM | ID: wpr-935331

ABSTRACT

Objective: Comparative analyses of wild-type Clostridioides difficile 630 (Cd630) strain and pathogenicity locus (PaLoc) knockout mutant (ΔPaLoc) by using RNA-seq technology. Analysis of differential expression of Cd630 wild-type strain and ΔPaLoc mutant strain and measurement of its cellular virulence changes. Lay the foundation for the construction of an toxin-attenuated vaccine strain against Clostridioides difficile. Methods: Analysis of Cd630 and ΔPaLoc mutant strains using high-throughput sequencing (RNA-seq). Clustering differentially expressed genes and screening differentially expressed genes by DESeq software. Further analysis of differential genes using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Finally, cytotoxicity assays of ΔPaLoc and Cd630 strains were performed in the African monkey kidney epithelial cell (Vero) and the human colonic cell (Caco-2) lines. Results: The transcriptome data showed that the ΔPaLoc mutant toxin genes tcdA and tcdB were not transcribed. Compared to the wild-type strain, CD630_36010, CD630_020910,CD630_02080 and cel genes upregulated 17.92,11.40,8.93 and 7.55 fold, respectively. Whereas the hom2 (high serine dehydrogenase), the CD630_15810 (spore-forming protein), CD630_23230 (zinc-binding dehydrogenase) and CD630_23240 (galactitol 1-phosphate 5-dehydrogenase) genes were down-regulated by 0.06, 0.075, 0.133 and 0.183 fold, respectively. The GO and KEGG enrichment analyses showed that the differentially transcribed genes in ΔPaLoc were enriched in the density-sensing system, ABC transport system, two-component system, phosphotransferase (PTS) system, and sugar metabolism pathway, as well as vancomycin resistance-related pathways. Cytotoxicity assays showed that the ΔPaLoc mutant strain lost its virulence to Vero and Caco-2 cells compared to the wild-type Cd630 strain. Conclusion: Transcriptional sequencing analysis of the Cd630 and ΔPaLoc mutant strains showed that the toxin genes were not transcribed. Those other differential genes could provide a reference for further studies on the physiological and biochemical properties of the ΔPaLoc mutant strain. Cytotoxicity assays confirmed that the ΔPaLoc mutant lost virulence to Vero and Caco-2 cells, thus laying the foundation for constructing an toxin-attenuated vaccine strain against C. difficile.


Subject(s)
Humans , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Caco-2 Cells , Clostridioides , Clostridioides difficile/genetics , Oxidoreductases/metabolism , Transcriptome , Vaccines, Attenuated
20.
Chinese Journal of Preventive Medicine ; (12): 370-376, 2022.
Article in Chinese | WPRIM | ID: wpr-935295

ABSTRACT

To explore the protective immune effect induced by mucosal delivery heparin-binding hemagglutinin (HBHA)-a candidate vaccine antigen of Mycobacterium tuberculosis. Female C57BL/6 mice were between 6 and 8 weeks of age before experimental use. Thirty mice received different immunization strategies and were randomly divided into the control group, the early secreting antigen target-6 (ESAT-6) intranasal immunization group, the HBHA intranasal immunization group, the BCG priming PBS control group, or BCG priming HBHA boost group, 6 mice in each group. In order to analyzed the immune effect, the concentrations of plasma Interleukin-17A (IL-17A) and other cytokines were measured by ELISA. Quantitative real-time PCR analyses were performed to detect the relative quantity (RQ) mRNA of IL-17A in the lung. The lung tissue sections were stained to detect the formation of the tertiary lymphoid structures. The chemokines contributed to formation of the tertiary lymphoid structures were also measured. Flow cytometry was used to detect the frequency of Th1 and Th17 cells in the system. Sixty mice in the BCG priming PBS control group and the BCG priming HBHA boost group were sacrificed at different time points after infection to count the lung bacterial burden. The concentrations of plasma IL-17A and relative quantity of lung IL-17A mRNA were highest in the BCG priming HBHA boost group [(14.76±4.73) pg/mL,RQ (12.27±6.71)], which was significantly higher than the control group [(5.57±2.95) pg/mL,RQ (1.30±0.97)] (t=4.213, P<0.001; t=5.984, P<0.001), and also significantly higher than the BCG priming PBS control group [(6.81±2.18) pg/mL,RQ (1.44±1.16)] (t=3.646 P=0.001; t=6.185 P<0.001). Compared with the BCG priming PBS control group (0.38±0.38)% the frequency of spleen Th17 cells were also significantly increased (t=-0.280 , P=0.048) in the BCG-primary HBHA boost group (1.02±0.34)%. In addition, HBHA boosting could promote better formation of the tertiary lymphoid structures in the lung, and decrease the bacterial load on the early stage after BCG challenge. Collectively, mucosal delivery of HBHA can effectively enhance the protective effect after BCG vaccination, and it is a potential candidate vaccine component.


Subject(s)
Animals , Female , Humans , Mice , Antigens, Bacterial , Bacterial Proteins , Immunization, Secondary , Interleukin-17 , Lectins , Mice, Inbred C57BL , Mycobacterium tuberculosis , Tuberculosis/prevention & control , Tuberculosis Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL